Trace Elements in Soils of a Typical Industrial District in Ningxia, Northwest China: Pollution, Source, and Risk Evaluation

Author:

Zhang SonglinORCID,Liu YuanORCID,Yang YujingORCID,Ni Xilu,Arif MuhammadORCID,Charles Wokadala,Li Changxiao

Abstract

Intense industrial activities could result in massive accumulations of trace elements in the soil and risk the terrestrial ecosystems and human health. A total of 119 topsoil samples from a typical industrial area, Huinong District, Ningxia, Northwest China, were collected, and the contents of six trace elements (As, Cd, Cr, Cu, Pb, and Zn) were determined. The results indicated that the mean concentrations of Cr, Cu, Pb, and Zn were lower than the national standard values of class II, while As and Cd were 2.77 and 3.92 times the corresponding threshold values. Multivariate analyses revealed six metals can be categorized into three principal components (PC). PC1 was As, Cd, and Pb, which originated from anthropogenic inputs. PC2 consisted of Cr and Cu, which originated from the natural geological background. PC3 only included Zn and was mainly due to agricultural impacts. The spatial distribution of six metals greatly varied from local anthropic inputs. For As and Cd, the most heavily polluted area was located in the north and southwest parts of the study area, whereas most Zn was enriched in the southern part, which was mainly agricultural land. The topsoil in this area displayed a moderate environmental risk with the metal pollution order of Cd > As > Zn ≈ Cr ≈ Pb ≈ Cu. Moreover, the contents of trace elements in the industrial land and water were relatively higher than those in other land-use types, indicating a considerable risk of metal migration and accumulation to rivers and the groundwater. It is suggested that effective remediation measures for Cd and As, in particular, should be properly employed for the sustainable development of the soil and groundwater, while reducing the risk of elements to the local residents in Huinong District.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3