Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations

Author:

Mahmoud Ahmed Abdulhamid,Elkatatny SalaheldinORCID,Al Shehri DhaferORCID

Abstract

Prediction of the mechanical characteristics of the reservoir formations, such as static Young’s modulus (Estatic), is very important for the evaluation of the wellbore stability and development of the earth geomechanical model. Estatic considerably varies with the change in the lithology. Therefore, a robust model for Estatic prediction is needed. In this study, the predictability of Estatic for sandstone formation using four machine learning models was evaluated. The design parameters of the machine learning models were optimized to improve their predictability. The machine learning models were trained to estimate Estatic based on bulk formation density, compressional transit time, and shear transit time. The machine learning models were trained and tested using 592 well log data points and their corresponding core-derived Estatic values collected from one sandstone formation in well-A and then validated on 38 data points collected from a sandstone formation in well-B. Among the machine learning models developed in this work, Mamdani fuzzy interference system was the highly accurate model to predict Estatic for the validation data with an average absolute percentage error of only 1.56% and R of 0.999. The developed static Young’s modulus prediction models could help the new generation to characterize the formation rock with less cost and safe operation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3