Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture

Author:

Wei Chunyang,Yu Chengzhuang,Li ShanshanORCID,Li TiejunORCID,Meng Jiyu,Li JunweiORCID

Abstract

Cell culture plays an essential role in tissue engineering and high-throughput drug screening. Compared with two-dimensional (2D) in vitro culture, three-dimensional (3D) in vitro culture can mimic cells in vivo more accurately, including complex cellular organizations, heterogeneity, and cell–extracellular matrix (ECM) interactions. This article presents a droplet-based microfluidic chip that integrates cell distribution, 3D in vitro cell culture, and in situ cell monitoring in a single device. Using the microfluidic “co-flow step emulsification” approach, we have successfully prepared close-packed droplet arrays with an ultra-high-volume fraction (72%) which can prevent cells from adhering to the chip surface so as to achieve a 3D cell culture and make scalable and high-throughput cell culture possible. The proposed device could produce droplets from 55.29 ± 1.52 to 95.64 ± 3.35 μm, enabling the diverse encapsulation of cells of different sizes and quantities. Furthermore, the cost for each microfluidic CFSE chip is approximately USD 3, making it a low-cost approach for 3D cell culture. The proposed device is successfully applied in the 3D culture of saccharomyces cerevisiae cells with an occurrence rate for proliferation of 80.34 ± 3.77%. With low-cost, easy-to-operate, high-throughput, and miniaturization characteristics, the proposed device meets the requirements for 3D in vitro cell culture and is expected to be applied in biological fields such as drug toxicology and pharmacokinetics.

Funder

National Natural Science Foundation of China

Fund for Distinguish Young Scholars in Tianjin 2018 3rd Round

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3