An Improved Automated High-Throughput Efficient Microplate Reader for Rapid Colorimetric Biosensing

Author:

Yang Jinhu,Wu Yue,Wang Hao,Yang Wenjian,Xu Zhongyuan,Liu Dong,Chen Hui-Jiuan,Zhang DimingORCID

Abstract

A high-throughput instrument to measure the full spectral properties of biochemical agents is necessary for fast screening in fields such as medical tests, environmental monitoring, and food analysis. However, this need has currently not been fully met by the commercial microplate reader (CMR). In this study, we have developed an automated high-throughput efficient microplate reader (AHTEMR) platform by combining a spectrometer and high-precision ball screw two-dimensional motion slide together, for high-throughput and full-spectrum-required biochemical assays. A two-dimensional slide working on a ball screw was driven by a stepper motor with a custom-designed master control circuit and used as a motion system of the AHTEMR platform to achieve precise positioning and fast movement of the microplate during measurements. A compact spectrometer was coupled with an in-house designed optical pathway system and used to achieve rapid capture of the full spectral properties of biochemical agents. In a performance test, the AHTEMR platform successfully measured the full spectral absorbance of bovine serum albumin (BSA) and glucose solution in multiple wells of the microplate within several minutes and presented the real-time full spectral absorbance of BSA and glucose solution. Compared with the CMR, the AHTEMR is 79 times faster in full-spectrum measurements and 2.38 times more sensitive at the optimal wavelength of 562 nm. The rapid measurement also demonstrated the great capacity of the AHTEMR platform for screening out the best colorimetric wavelengths for tests of BSA and glucose development, which will provide a promising approach to achieving high-throughput and full-spectrum-required biochemical assays.

Funder

Zhejiang Lab

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3