The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography

Author:

Cano JesúsORCID,Fácila LorenzoORCID,Gracia-Baena Juan M.ORCID,Zangróniz RobertoORCID,Alcaraz RaúlORCID,Rieta José J.ORCID

Abstract

The detection of hypertension (HT) is of great importance for the early diagnosis of cardiovascular diseases (CVDs), as subjects with high blood pressure (BP) are asymptomatic until advanced stages of the disease. The present study proposes a classification model to discriminate between normotensive (NTS) and hypertensive (HTS) subjects employing electrocardiographic (ECG) and photoplethysmographic (PPG) recordings as an alternative to traditional cuff-based methods. A total of 913 ECG, PPG and BP recordings from 69 subjects were analyzed. Then, signal preprocessing, fiducial points extraction and feature selection were performed, providing 17 discriminatory features, such as pulse arrival and transit times, that fed machine-learning-based classifiers. The main innovation proposed in this research uncovers the relevance of previous calibration to obtain accurate HT risk assessment. This aspect has been assessed using both close and distant time test measurements with respect to calibration. The k-nearest neighbors-classifier provided the best outcomes with an accuracy for new subjects before calibration of 51.48%. The inclusion of just one calibration measurement into the model improved classification accuracy by 30%, reaching gradually more than 96% with more than six calibration measurements. Accuracy decreased with distance to calibration, but remained outstanding even days after calibration. Thus, the use of PPG and ECG recordings combined with previous subject calibration can significantly improve discrimination between NTS and HTS individuals. This strategy could be implemented in wearable devices for HT risk assessment as well as to prevent CVDs.

Funder

Government of Spain

Regional Government of Castile-La Mancha

Generalitat Valenciana

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3