Affiliation:
1. College of Computer and Control Engineering, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
Abstract
As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogeneity in terms of data distribution and hardware configurations make it hard to select participants from the thousands of nodes. In this paper, we propose a multi-objective node selection approach to improve time-to-accuracy performance while resisting malicious nodes. We firstly design a deep reinforcement learning-assisted FL framework. Then, the problem of multi-objective node selection under this framework is formulated as a Markov decision process (MDP), which aims to reduce the training time and improve model accuracy simultaneously. Finally, a Deep Q-Network (DQN)-based algorithm is proposed to efficiently solve the optimal set of participants for each iteration. Simulation results show that the proposed method not only significantly improves the accuracy and training speed of FL, but also has stronger robustness to resist malicious nodes.
Funder
Natural Science Foundation of Heilongjiang Province of China
Key Research and Development Program Heilongjiang Province of China
Subject
Computer Networks and Communications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献