Trade-Off Analysis of Hardware Architectures for Channel-Quality Classification Models

Author:

Torres-Alvarado AlanORCID,Morales-Rosales Luis AlbertoORCID,Algredo-Badillo IgnacioORCID,López-Huerta FranciscoORCID,Lobato-Baez MarianaORCID,López-Pimentel Juan CarlosORCID

Abstract

The latest generation of communication networks, such as SDVN (Software-defined vehicular network) and VANETs (Vehicular ad-hoc networks), should evaluate their communication channels to adapt their behavior. The quality of the communication in data networks depends on the behavior of the transmission channel selected to send the information. Transmission channels can be affected by diverse problems ranging from physical phenomena (e.g., weather, cosmic rays) to interference or faults inherent to data spectra. In particular, if the channel has a good transmission quality, we might maximize the bandwidth use. Otherwise, although fault-tolerant schemes degrade the transmission speed by solving errors or failures should be included, these schemes spend more energy and are slower due to requesting lost packets (recovery). In this sense, one of the open problems in communications is how to design and implement an efficient and low-power-consumption mechanism capable of sensing the quality of the channel and automatically making the adjustments to select the channel over which transmit. In this work, we present a trade-off analysis based on hardware implementation to identify if a channel has a low or high quality, implementing four machine learning algorithms: Decision Trees, Multi-Layer Perceptron, Logistic Regression, and Support Vector Machines. We obtained the best trade-off with an accuracy of 95.01% and efficiency of 9.83 Mbps/LUT (LookUp Table) with a hardware implementation of a Decision Tree algorithm with a depth of five.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3