Abstract
We show that transfer hysteresis for a pentacene thin film transistor (TFT) with a low-temperature solution-processed zirconia (ZrOx) gate insulator can be remarkably reduced by modifying the ZrOx surface with a thin layer of crosslinked poly(4-vinylphenol) (c-PVP). Pentacene TFTs with bare ZrOx and c-PVP stacked ZrOx gate insulators were fabricated, and their hysteresis behaviors compared. The different gate insulators exhibited no significant surface morphology or capacitance differences. The threshold voltage shift magnitude decreased by approximately 71% for the TFT with the c-PVP stacked ZrOx gate insulator compared with the bare ZrOx gate insulator, with 0.75 ± 0.05 and 0.22 ± 0.03 V threshold voltage shifts for the bare ZrOx and c-PVP stacked ZrOx gate insulators, respectively. The hysteresis reduction was attributed to effectively covering hysteresis-inducing charge trapping sites on ZrOx surfaces.
Funder
Ministry of Education
Ministry of Science and ICT
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献