Cohesive Element Model for Fracture Behavior Analysis of Al2O3/Graphene Composite Ceramic Tool Material

Author:

Zhang Yongpeng,Xiao Guangchun,Xu ChonghaiORCID,Zhou Tingting,Yi Mingdong,Chen ZhaoqiangORCID

Abstract

The microstructure model of Al2O3/graphene (AG) composite ceramic tool material is established based on Voronoi tessellation. The cohesive element method was used to simulate the crack growth of AG. The effect of cohesive parameters at the grain boundary of Al2O3 and graphene on the crack propagation was investigated. The results show that the grain strength of graphene is too high, the crack propagation to graphene grains will be hindered and cannot propagate forward. Cracks tend to spread along the paths where the crack propagation drive force was high and the resistance was low. When the interface strength between Al2O3 and graphene was at the weak interface, the crack propagation path and length were relatively straight and short. The average energy release rate G C is 1.042 × 10−3 J/m2, which is 2.4% higher than that of single-phase Al2O3 ceramic tool materials. However, if the interface strength between Al2O3 and graphene was at the strong interface, the crack propagated along graphene particles for a short distance, consuming a large amount of fracture energy. Furthermore, the crack will deflect around graphene grains, which increases the crack propagation length. The average energy release rate G C is 1.039 × 10−3 J/m2, which is 2% higher than that of single-phase Al2O3 ceramic tool materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3