Deciphering Igneous Rock Crystals: Unveiling Multifractal Patterns in Crystal Size Dynamics

Author:

Eskandari Amir1ORCID,Sadeghi Behnam23ORCID

Affiliation:

1. Pooyeshgaran Kansar Limited Company, Science and Technology Paradise, Tehran 1765685338, Iran

2. CSIRO Mineral Resources, Australian Resources Research Centre, Kensington, WA 6151, Australia

3. Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia

Abstract

Understanding magma plumbing systems hinges upon an intricate comprehension of crystal populations concerning size, chemistry, and origin. We introduce an innovative, yet elegantly simple approach—the ‘number–length of crystals (N-LoC) multifractal model’—to classify crystal sizes, unveiling compelling insights into their distribution dynamics. This model, a departure from conventional crystal size distribution (CSD) diagrams, reveals multifractal patterns indicative of distinct class sizes within igneous rock crystals. By synthesizing multiple samples from experimental studies, natural occurrences, and numerical models, we validate this method’s efficacy. Our bi-logarithmic N-LoC diagrams for cooling-driven crystallized samples transcend the confines of traditional CSD plots, identifying variable thresholds linked to cooling rates and quenching temperatures. These thresholds hint at pulsative nucleation and size-dependent growth events, offering glimpses into crystallization regimes and post-growth modifications like coalescence and coarsening. Examining multifractal log–log plots across time-series samples unravels crystallization histories during cooling or decompression. Notably, microlites within volcano conduits delineate thresholds influenced by decompression rate and style, mirroring nucleation and growth dynamics observed in experimental studies. Our fractal methodology, presenting a more direct approach with fewer assumptions than the classic CSD method, stands poised as a potent alternative or complementary tool. We delve into its potential, facilitating comparisons between eruptive styles in volcanoes while deliberating on inherent limitations. This work not only advances crystal size analysis methodologies but also holds promise for inferring nuanced volcanic processes and offers a streamlined avenue for crystal size evaluation in igneous rocks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3