Developed Recyclable CaFe-Layered Double Hydroxide for Efficient Cadmium Immobilization in Soil: Performance and Bioavailability

Author:

Jing Yuqi1,Chen Ran1,Zhang Jiayao1,Hu Liyun1,Qiu Xinhong123

Affiliation:

1. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan 430074, China

3. Wuhan Institute of Technology Jingmen Research Institute of New Chemical Materials Industry Technology, Wuhan 430070, China

Abstract

Powdered layered double hydroxide (CaFe-LDH) was synthesized via hydrothermal co-precipitation, demonstrating successful preparation upon characterization. Subsequently, experiments were conducted to assess its efficacy in immobilizing divalent cadmium (Cd(II)). The findings substantiated the effectiveness of CaFe-LDH in immobilizing Cd(II) within soil. Various influencing factors, including LDH dosage, pH, and soil heavy metal concentration, were systematically investigated, revealing CaFe-LDH’s superiority in Cd(II) immobilization. Notably, the leaching concentration of Cd(II) was notably reduced from 142.30 mg/L to 32.99 mg/L, with a maximum adsorption capacity of 31.10 mg/L, underscoring the significant role of CaFe-LDH in Cd(II) removal. Furthermore, the stability of CaFe-LDH was confirmed via toxicity characteristic leaching procedure (TCLP) experiments and plant potting tests. In-depth analysis of the immobilization mechanism through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) elucidated isomorphous substitution and surface adsorption as the primary mechanisms responsible for Cd(II) immobilization in contaminated soils. Additionally, isomorphic substitution and adsorption onto oxygen-containing functional groups were observed. This comprehensive study underscores the promising potential of CaFe-LDH in immobilizing Cd(II) in contaminated soil. With its commendable immobilization properties and recyclability, CaFe-LDH emerges as a promising solution for remediating heavy-metal-contaminated soils.

Funder

National Natural Science Foundation of China

Innovative Team program of Natural Science Foundation of Hubei Province

open founding of Wuhan institute of technology jingmen research institute of new chemical materials industry technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3