FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis

Author:

Ibrahim Jamal1ORCID,Mintz Eugenia1,Regev Lior1ORCID,Regev Dalit2ORCID,Gronau Ilan3,Weiner Steve14,Boaretto Elisabetta1ORCID

Affiliation:

1. D-REAMS Radiocarbon Laboratory, Scientific Archaeology Unit, Weizmann Institute of Science, Rehovot 7610001, Israel

2. Israel Antiquities Authority, Jerusalem 9100402, Israel

3. The Efi Arazi School of Computer Science, Reichman University, Herzliya 46150, Israel

4. Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract

The petrous bone generally preserves ancient DNA better than other fossil bones. One reason for this is that the inner layer of the petrous bone of pigs and humans contains about three times as many osteocytes as other bones, and hence more DNA. A FIB-SEM study of modern pig petrous bones showed that the 3D structure of the thin inner layer is typical of woven bone that forms in the fetus, whereas the thicker outer layer has a lamellar structure. The lamellar structure is common in mammalian bones. Here we study human petrous bones that are about 2500 years old, obtained from three Phoenician sites in Sicily, Italy. A detailed FIB-SEM study of two of these bones, one well preserved and the other poorly preserved, shows that the 3D bone type structure of the human petrous inner layer is woven bone, and the outer layer is lamellar bone. These are the same bone type structures found in pig petrous bones. Furthermore, by comparing nine differently preserved petrous bones from the same archaeological region and age, we show that their collagen contents vary widely, implying that organic material can be significantly altered during diagenesis. The mineral crystals are better preserved and hence less crystalline in the inner layers compared to the outer layers. We therefore infer that the best-preserved DNA in fossil petrous bones should be found in the thin inner layers immediately adjacent to the otic cavity where much more DNA is initially present and the mineral phase tends to be better preserved.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3