Mineralogy and Geochemistry of Jasperoid Veins in Neoproterozoic Metavolcanics: Evidence of Silicification, Pyritization and Hematization

Author:

Khedr Mohamed Zaki1ORCID,Sayed Mahmoud A.2ORCID,Ali Shehata3ORCID,Azer Mokhles K.4,Ichiyama Yuji5,Takazawa Eiichi6ORCID,Kahal Ali Y.7,Abdelrahman Kamal7ORCID,Mahdi Ali M.2

Affiliation:

1. Geology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

2. Geology Department, Faculty of Science, South Valley University, Qena 83523, Egypt

3. Geology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt

4. Geological Sciences Department, National Research Centre, Cairo 12622, Egypt

5. Graduate School of Science, Chiba University, Chiba 263-8522, Japan

6. Geology Department, Faculty of Science, Niigata University, Niigata 950-2181, Japan

7. Department of Geology and Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

The Wadi Ranga sulfidic jasperoids in the Southern Eastern Desert (SED) of Egypt are hosted within the Neoproterozoic Shadli metavolcanics as an important juvenile crustal section of the Arabian Nubian Shield (ANS). This study deals with remote sensing and geochemical data to understand the mechanism and source of pyritization, silicification, and hematization in the host metavolcanics and to shed light on the genesis of their jasperoids. The host rocks are mainly dacitic to rhyolitic metatuffs, which are proximal to volcanic vents. They show peraluminous calc-alkaline affinity. These felsic metatuffs also exhibit a nearly flat REE pattern with slight LREE enrichment (La/Yb = 1.19–1.25) that has a nearly negative Eu anomaly (Eu/Eu* = 0.708–0.776), while their spider patterns display enrichment in Ba, K, and Pb and depletion in Nb, Ta, P, and Ti, reflecting the role of slab-derived fluid metasomatism during their formation in the island arc setting. The ratios of La/Yb (1.19–1.25) and La/Gd (1.0–1.17) of the studied felsic metatuffs are similar to those of the primitive mantle, suggesting their generation from fractionated melts that were derived from a depleted mantle source. Their Nb and Ti negative anomalies, along with the positive anomalies at Pb, K, Rb, and Ba, are attributed to the influence of fluids/melt derived from the subducted slab. The Wadi Ranga jasperoids are mainly composed of SiO2 (89.73–90.35 wt.%) and show wide ranges of Fe2O3t (2.73–6.63 wt.%) attributed to the significant amount of pyrite (up to 10 vol.%), hematite, goethite, and magnetite. They are also rich in some base metals (Cu + Pb + Zn = 58.32–240.68 ppm), leading to sulfidic jasperoids. Pyrite crystals with a minor concentration of Ag (up to 0.32 wt.%) are partially to completely converted to secondary hematite and goethite, giving the red ochre and forming hematization. Euhedral cubic pyrite is of magmatic origin and was formed in the early stages and accumulated in jasperoid by epigenetic Si-rich magmatic-derived hydrothermal fluids; pyritization is considered a magmatic–hydrothermal stage, followed by silicification and then hematization as post-magmatic stages. The euhedral apatite crystals in jasperoid are used to estimate the saturation temperature of their crystallization from the melt at about 850 °C. The chondrite (C1)-normalized REE pattern of the jasperoids shows slightly U–shaped patterns with a slightly negative Eu anomaly (Eu/Eu* = 0.43–0.98) due to slab-derived fluid metasomatism during their origin; these jasperoids are also rich in LILEs (e.g., K, Pb, and Sr) and depleted in HFSEs (e.g., Nb and Ta), reflecting their hydrothermal origin in the island arc tectonic setting. The source of silica in the studied jasperoids is likely derived from the felsic dyke and a nearby volcanic vent, where the resultant Si-rich fluids may circulate along the NW–SE, NE–SW, and E–W major faults and shear zones in the surrounding metavolcanics to leach Fe, S, and Si to form hydrothermal jasperoid lenses and veins.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3