Geochronological, Geochemical and Pb Isotope Inferences for Genesis of Wulandele Porphyry Molybdenum Deposit, Inner Mongolia, Northeast China

Author:

Wang Jianping1ORCID,Zhang Jiexian12,Liu Zhenjiang1ORCID,Zhao Yun1ORCID,Zhang Fangfang1

Affiliation:

1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

2. Natural Resources Bureau of Maoxian, Aba Prefecture 623200, China

Abstract

Integrated geochemical, U-Pb zircon, and Pb isotopic data from granitoids of the Wulandele porphyry molybdenum deposit, northeastern Inner Mongolia, are reported to disclose the possible magmatic process and Mo ore-forming process. LA-ICP-MS zircon U-Pb dating constrains the timing of the quartz diorite and monzonitic granite to 282 ± 2.4 Ma and 135.4 ± 2.1 Ma, respectively. The ages are accordant with geological facts which state that the shallow Permian granitoids are only the ore-hosting rock while the concealed Cretaceous fine-grained granite is the causative intrusion. Whole-rock geochemical data show that the granitoids belong to the high-K calc-alkaline series, and are enriched in LILEs, but depleted in HSFEs. Permian granitoids exhibit I-type characteristics, while Cretaceous granite is akin to A-type granite. Pb isotopic ratios are consistent between Permian granitoids and Cretaceous granite with ratios of 206Pb/204Pb = 18.048–18.892, 207Pb/204Pb = 15.488–15.571, and 208Pb/204Pb = 37.066–38.441. Considering geological and geochemical features together, Permian granitoids are interpreted as subduction-related continental margin high-K calc-alkaline rocks, while Cretaceous granite may be the result of the remelting of the relic Permian arc in an extensional environment induced by the rollback of the Paleo-Pacific plate. Different from classical porphyry-type deposits, the Wulandele Mo deposit, which formed in an intraplate tectonic setting, indicates that the intraplate porphyry Mo deposit should be one of the important exploration targets in the Central Asian Orogenic Belt, especially its eastern segment.

Funder

National Natural Science Foundations of China

Inner Mongolia Academician Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3