Conceptual Design and Structural Performance Analysis of an Innovative Deep-Sea Aquaculture Platform

Author:

Li Yangyang1,Zhen Xingwei1,Zhu Yesen2ORCID,Huang Yi1,Zhang Lixin1ORCID,Li Hongxia1

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China

2. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China

Abstract

This paper proposes a conceptual design of an innovative deep-sea aquaculture platform that integrates a steel structural framework and high-density polyethylene (HDPE) floats. It aims to overcome the limitations of prevailing aquaculture equipment, including inadequate resistance to strong wind and waves, complex technologies, and prohibitively high costs. The design scheme and key parameters of the main platform, the netting system, and the mooring systems are presented. Based on the stochastic design wave method, the characteristic load response scenarios and design wave parameters are determined and analyzed. Strength analysis is conducted to assess the structural performance, vulnerabilities, and overall safety of the platform under various characteristic load conditions. The results indicate that the Von Mises stress levels across different sections of the platform conform to the allowable stress thresholds under various characteristic load conditions. However, the stress levels of the platform are notably higher when subjected to characteristic loads associated with vertical shear, vertical bending moments, and torsion about the horizontal axis, which requires further efforts in the design process to enhance the structural safety of the platform. The proposed design methodology and the presented research results can provide a wide range of references for the design and analysis of deep-sea fisheries aquaculture equipment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3