Exploring Wave–Vegetation Interaction at Stem Scale: Analysis of the Coupled Flow–Structure Interactions Using the SPH-Based DualSPHysics Code and the FEA Module of Chrono

Author:

El Rahi Joe1ORCID,Martínez-Estévez Iván2ORCID,Almeida Reis Rui3ORCID,Tagliafierro Bonaventura45ORCID,Domínguez José M.2ORCID,Crespo Alejandro J. C.2ORCID,Stratigaki Vasiliki1ORCID,Suzuki Tomohiro67ORCID,Troch Peter1ORCID

Affiliation:

1. Department of Civil Engineering, Ghent University, Technologiepark 60, 9052 Ghent, Belgium

2. Environmental Physics Laboratory, Centro de Investigación Mariña (CIM-UVIGO), Universidade de Vigo, Campus As Lagoas, 32004 Ourense, Spain

3. Hydraulics and Environment Department, National Laboratory for Civil Engineering (LNEC), Avenida do Brasil 101, 1700-066 Lisbon, Portugal

4. Department of Civil and Environmental Engineering (DECA), Universitat Politecnica de Catalunya, Jordi Girona, 08034 Barcelona, Spain

5. School of Natural and Built Environment, Queen’s University Belfast, Belfast BT9 5AG, UK

6. Flanders Hydraulics, Berchemlei 115, 2140 Antwerp, Belgium

7. Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium

Abstract

Aquatic vegetation in the littoral zone plays a crucial role in attenuating wave energy and protecting coastal communities from hazardous events. This study contributes to the development of numerical models aimed at designing nature-based coastal defense systems. Specifically, a novel numerical application for simulating wave–vegetation interactions at the stem scale is presented. The numerical model employed, DualSPHysics, couples the meshfree Smoothed Particle Hydrodynamics (SPH) fluid solver with a structural solver to accurately capture the two-way interactions between waves and flexible vegetation. The proposed numerical model is validated against experimental data involving a submerged rubber cylinder representing an individual vegetation stem, subjected to regular waves. The results demonstrate excellent agreement in hydrodynamics, force transfer, and the swaying motion of the flexible cylinder. Importantly, the approach explicitly captures energy transfer between the fluid environment and the individual stem. The numerical results indicate persistent turbulent flow along the vegetation stem, even when its swaying speed matches that of the surrounding environment. This reveals the presence of vortex shedding and energy dissipation, which challenges the concept of passive swaying in flexible aquatic vegetation.

Funder

FWO (FondsWetenschappelijk Onderzoek—Research Foundation Flanders), Belgium

Xunta de Galicia under “Programa de axudas á etapa predoutoral da Consellería de Cultura

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3