A Robust Sparse Sensor Placement Strategy Based on Indicators of Noise for Ocean Monitoring

Author:

Zhang Qiannan1ORCID,Wu Huafeng1ORCID,Liang Li’nian1ORCID,Mei Xiaojun1ORCID,Xian Jiangfeng2ORCID,Zhang Yuanyuan3ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

2. Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

3. School of Computer and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China

Abstract

A well-performing data-driven sparse sensor deployment strategy is critical for marine monitoring systems, as it enables the optimal reconstruction of marine physical quantities with fewer sensors. However, ocean data typically contain substantial amounts of noise, including outliers (incomplete data) and inherent measurement noise, which heightens the complexity of sensor deployment. Therefore, this study optimizes the sparse sensor placement model by establishing noise indicators, including small noise weight and large noise weight, which are measured by entropy to minimize the prediction bias. Building on this, a robust sparse sensor placement algorithm is proposed, which utilizes the block coordinate update (BCU) iteration method to solve the function. During the iterative updating process, the proposed algorithm simultaneously updates the selection matrix, reconstruction matrix, and noise matrix. This allows for effective identification and mitigation of noise in the data through evaluation. Consequently, the deployed sensors achieve superior reconstruction performance compared to other deployment methods that do not incorporate noise evaluation. Experiments are also conducted on datasets of sea surface temperature (SST) and global ocean salinity, which demonstrate that our strategy significantly outperforms several other considered methods in terms of reconstruction accuracy while enabling autonomous sensor deployment under noisy conditions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Shanghai Committee of Science and Technology, China

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3