Improving Agar Degradation Activity of Vibrio natriegens WPAGA4 via Atmospheric and Room Temperature Plasma (ARTP)

Author:

Tong Xiufang1,Fan Shichang1,Li Xuelian1,Zhang Mengyuan1,Wang Jianxin1ORCID,Qu Wu1ORCID

Affiliation:

1. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China

Abstract

Agar oligosaccharides from the degradation of agar harbor great potential in the food and pharmaceutical industries. An agar-degrading bacterium, Vibrio natriegens WPAGA4, was isolated from the deep sea in our previous work. However, the agar-degrading activity of WPAGA4 remains to be improved for more production benefits of this strain. The aim of this study was to enhance the agar-degrading activity of WPAGA4 by using atmospheric and room temperature plasma (ARTP) mutagenesis. Three mutant strains, including T1, T2, and T3, with good genetic stability were obtained, and the agar-degrading activities of these strains increased by 136%, 141%, and 135%, respectively. The optimal temperature and pH for agar degradation were slightly changed in the mutant strains. No sequence mutation was detected in all the agarase genes of WPAGA4, including agaW3418, agaW3419, agaW3420, and agaW3472. However, ARPT mutagenesis increased the relative expression levels of agaW3418, agaW3419, and agaW3420 in the mutant strains, which could be the reason for the improvement of degradation activities in the mutant strains. Furthermore, T3 had the lowest consumption rate of agar oligosaccharide, which was 21% less than the wild-type strain. Therefore, T3 possessed a preferable production value due to its higher degrading activity and lower consumption of agar oligosaccharides. The current work enhanced the agar-degrading activity of WPAGA4 and offered strains with greater potential for agar oligosaccharide production, thereby laying the foundation for industrial applications.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Science and Technology Program of Zhoushan

Technology Innovation Center for Exploitation of Marine Biological Resources, MNR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3