USVs Path Planning for Maritime Search and Rescue Based on POS-DQN: Probability of Success-Deep Q-Network

Author:

Liu Lu1,Shan Qihe1,Xu Qi2

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. Research Institute of Intelligent Networks, Zhejiang Lab, Hangzhou 311121, China

Abstract

Efficient maritime search and rescue (SAR) is crucial for responding to maritime emergencies. In traditional SAR, fixed search path planning is inefficient and cannot prioritize high-probability regions, which has significant limitations. To solve the above problems, this paper proposes unmanned surface vehicles (USVs) path planning for maritime SAR based on POS-DQN so that USVs can perform SAR tasks reasonably and efficiently. Firstly, the search region is allocated as a whole using an improved task allocation algorithm so that the task region of each USV has priority and no duplication. Secondly, this paper considers the probability of success (POS) of the search environment and proposes a POS-DQN algorithm based on deep reinforcement learning. This algorithm can adapt to the complex and changing environment of SAR. It designs a probability weight reward function and trains USV agents to obtain the optimal search path. Finally, based on the simulation results, by considering the complete coverage of obstacle avoidance and collision avoidance, the search path using this algorithm can prioritize high-probability regions and improve the efficiency of SAR.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for Central Universities

the Zhejiang Lab Open Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3