The Proteome Profile of Halimeda macroloba under Elevated Temperature: A Case Study from Thailand

Author:

Chintakovid Nutwadee1,Phaonakrop Narumon2,Surachat Komwit13ORCID,Phetcharat Sinjai4,Wutiruk Tarawit4,Roytrakul Sittiruk2ORCID,Mayakun Jaruwan4ORCID

Affiliation:

1. Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand

2. Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand

3. Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand

4. Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

Abstract

An elevated sea temperature is considered a key abiotic stressor causing thermal stress to intertidal macroalgae and influencing their populations. Halimeda macroloba is an important CaCO3 producer that contributes to the carbonate budget in marine ecosystems. The population decline of this intertidal algal species could lead to considerable declines in both regional and global carbonate production. However, the impact of increasing temperature on the molecular mechanisms and protein profile of calcified H. macroloba is unclear and remains to be explored. In this study, H. macroloba was exposed to 30 °C and 35 °C for 7 days. The whole protein was then extracted using 0.5% SDS and digested using trypsin before an analysis using LC-MS. The protein profile of H. macroloba was characterized using the MaxQuant program aligned with the UniProt database. A total of 407 proteins were identified, and 12 proteins were found to be significantly upregulated or downregulated in response to the elevated temperature. Cell division protein, protein kinase domain-containing protein, phospholipid transport protein, and small ribosomal subunit protein were the significant proteins identified in our dataset. The proteins associated with cell division, cellular metabolic processes, localization, oxidoreductase activity, and biosynthetic process pathways were overexpressed with a more than 2-fold change at a high temperature. An interaction map generated using STITCH revealed that the significant protein change altered the other proteins related to abiotic stress, producing energy and inducing calcification. This information could be useful in understanding how H. macroloba responds to an elevated sea temperature.

Funder

National Science, Research, and Innovation Fund

Faculty of Science Research Fund, Faculty of Science, Prince of Songkla University

Postdoctoral Fellowship from Prince of Songkla University, Thailand

NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3