Enhancing Few-Shot Prediction of Ocean Sound Speed Profiles through Hierarchical Long Short-Term Memory Transfer Learning

Author:

Lu Jiajun1,Zhang Hao12,Li Sijia1,Wu Pengfei1,Huang Wei1ORCID

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

2. Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada

Abstract

The distribution of ocean sound speed profiles (SSPs) profoundly influences the design of underwater acoustic communication and positioning systems. Conventional methods for measuring sound speed by instruments entail high time costs, while sound speed inversion methods offer rapid estimation of SSPs. However, these methods heavily rely on sonar observational data and lack the capacity to swiftly estimate SSPs in arbitrary oceanic regions, particularly in scenarios with few-shot data. Precisely estimating non-cooperative maritime SSPs under such conditions poses a significant challenge. To explore temporal distribution patterns of sound speed and achieve precise SSP predictions with limited data, we propose a hierarchical long short-term memory transfer learning (H-LSTM-TL) framework. The core idea involves pre-training the base model on extensive public datasets, transferring the acquired knowledge to task models, and fine-tuning the task model on few-shot data to predict future SSPs. Through H-LSTM-TL, it accelerates model convergence, enhances sensitivity to few-shot input data, alleviates overfitting issues, and notably improves the accuracy of SSP predictions. Experimental results demonstrate that the H-LSTM-TL model exhibits strong generalization capabilities in few-shot data scenarios, effectively reducing overfitting problems and proving its applicability for rapid prediction of SSPs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3