Abstract
A local fixed pivot quadrature method of moments (LFPQMOM) is proposed for the solution of the population balance equation (PBE) for the aggregation and breakage process. First, the sectional representation for aggregation and breakage is presented. The continuous summation of the Dirac Delta function is adopted as the discrete form of the continuous particle size distribution in the local section as performed in short time Fourier transformation (STFT) and the moments in local sections are tracked successfully. Numerical simulation of benchmark test cases including aggregation, breakage, and aggregation breakage combined processes demonstrate that the new method could make good predictions for the moments along with particle size distribution without further assumption. The accuracy in the numerical results of the moments is comparable to or higher than the quadrature method of moment (QMOM) in most of the test cases. In theory, any number of moments can be tracked with the new method, but the computational expense can be relatively large due to many scalar equations that may be included.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献