A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers

Author:

Lin Chih-LangORCID,Wang Shyang-Guang,Tien Meng-Tsung,Chiang Chung-Han,Lee Yi-Chieh,Baldeck Patrice L.ORCID,Shin Chow-ShingORCID

Abstract

The quantitative analysis of cell surface antigens has attracted increasing attention due to the antigenic variation recognition that can facilitate early diagnoses. This paper presents a novel methodology based on the optical “cell-tearing” and the especially proposed “dilution regulations” to detect variations in cell surface antigens. The cell attaches to the corresponding antibody-coated slide surface. Then, the cell-binding firmness between a single cell and the functionalized surface is assayed by optically tearing using gradually reduced laser powers incorporated with serial antibody dilutions. Groups B and B3 of red blood cells (RBCs) were selected as the experiment subject. The results indicate that a higher dilution called for lower power to tear off the cell binding. According to the proposed relative-quantitative analysis theory, antigenic variation can be intuitively estimated by comparing the maximum allowable dilution folds. The estimation result shows good consistency with the finding in the literature. This study suggests a novel methodology for examining the variation in cell surface antigens, expected to be widely capable with potential sensor applications not only in biochemistry and biophysics, but also in the micro-/nano- engineering field.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3