Abstract
In this study, we used three-dimensional (3D) printing to prepare a template of a microfluidic chip from which a polydimethylsiloxane (PDMS)lung chip was successfully constructed. The upper and lower channels of the chip are separated by a microporous membrane. The upper channel is seeded with lung cancer cells, and the lower channel is seeded with vascular endothelial cells and continuously perfused with cell culture medium. This lung chip can simulate the microenvironment of lung tissue and realize the coculture of two kinds of cells at different levels. We used a two-dimensional (2D) well plate and a 3D lung chip to evaluate the effects of different EGFR-targeting drugs (gefitinib, afatinib, and osimertinib) on tumor cells. The 3D lung chip was superior to the 2D well plate at evaluating the effect of drugs on the NCI-H650, and the results were more consistent with existing clinical data. For primary tumor cells, 3D lung chips have more advantages because they simulate conditions that are more similar to the physiological cell microenvironment. The evaluation of EGFR-targeted drugs on lung chips is of great significance for personalized diagnosis and treatment and pharmacodynamic evaluation.
Funder
The Research and Development Plan of Key Areas in Guangdong Province
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献