Abstract
A ratiometric electrochemical biosensor based on a covalent organic framework (COFThi-TFPB) loaded with acetylcholinesterase (AChE) was developed. First, an electroactive COFThi-TFPB with a two-dimensional sheet structure, positive charge and a pair of inert redox peaks was synthesized via a dehydration condensation reaction between positively charged thionine (Thi) and 1,3,5-triformylphenylbenzene (TFPB). The immobilization of AChE on the positively charged electrode surface was beneficial for maintaining its bioactivity and achieving the best catalytic effect; therefore, the positively charged COFThi-TFPB was an appropriate support material for AChE. Furthermore, the COFThi-TFPB provided a stable internal reference signal for the constructed AChE inhibition-based electrochemical biosensor to eliminate various effects which were unrelated to the detection of carbaryl. The sensor had a linear range of 2.2–60 μM with a detection limit of 0.22 μM, and exhibited satisfactory reproducibility, stability and anti-interference ability for the detection of carbaryl. This work offers a possibility for the application of COF-based materials in the detection of low-level pesticide residues.
Funder
National Natural Science Foundation of China
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献