A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis

Author:

Santos Lorenna K. B.,Mendonça Priscila D.,Assis LiLian K. S.ORCID,Prudêncio Carlos R.ORCID,Guedes Maria Izabel F.,Marques Ernesto T. A.ORCID,Dutra Rosa FiremanORCID

Abstract

The Zika virus (ZIKV) is a great concern for global health due to its high transmission, including disseminating through blood, saliva, urine, semen and vertical transmission. In some cases, ZIKV has been associated with microcephaly, neurological disorders, and Guillain–Barré syndrome. There is no vaccine, and controlling the disease is a challenge, especially with the co-circulation of the Dengue virus, which causes a severe cross-reaction due to the similarity between the two arboviruses. Considering that electrochemical immunosensors are well-established, sensitive, and practical tools for diagnosis, in this study we developed a sensor platform with intrinsic redox activity that facilitates measurement readouts. Prussian blue (PB) has a great ability to form electrocatalytic surfaces, dispensing redox probe solutions in voltammetric measurements. Herein, PB was incorporated into a chitosan–carbon nanotube hybrid, forming a nanocomposite that was drop-casted on a screen-printed electrode (SPE). The immunosensor detected the envelope protein of ZIKV in a linear range of 0.25 to 1.75 µg/mL (n = 8, p < 0.01), with a 0.20 µg/mL limit of detection. The developed immunosensor represents a new method for electrochemical measurements without additional redox probe solutions, and it is feasible for application in point-of-care diagnosis.

Funder

National Council for Scientific and Technological Development

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3