Estimation of Aboveground Carbon Stocks in Forests Based on LiDAR and Multispectral Images: A Case Study of Duraer Coniferous Forests

Author:

Su Rina12ORCID,Du Wala34,Ying Hong12,Shan Yu12,Liu Yang12ORCID

Affiliation:

1. College of Geographic Science, Inner Mongolia Normal University, Hohhot 010022, China

2. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China

3. Chinese Academy of Agricultural Sciences Grassland Research Institute, Hohhot 010022, China

4. Arshan Forest and Grassland Disaster Prevention and Mitigation Field Scientific Observation and Research Station of Inner Mongolia Autonomous Region, Arshan 137400, China

Abstract

The correct estimation of forest aboveground carbon stocks (AGCs) allows for an accurate assessment of the carbon sequestration potential of forest ecosystems, which is important for in-depth studies of the regional ecological environment and global climate change. How to estimate forest AGCs quickly and accurately and realize dynamic monitoring has been a hot topic of research in the forestry field worldwide. LiDAR and remote sensing optical imagery can be used to monitor forest resources, enabling the simultaneous acquisition of forest structural properties and spectral information. A high-density LiDAR-based point cloud cannot only reveal stand-scale forest parameters but can also be used to extract single wood-scale forest parameters. However, there are multiple forest parameter estimation model problems, so it is especially important to choose appropriate variables and models to estimate forest AGCs. In this study, we used a Duraer coniferous forest as the study area and combined LiDAR, multispectral images, and measured data to establish multiple linear regression models and multiple power regression models to estimate forest AGCs. We selected the best model for accuracy evaluation and mapped the spatial distribution of AGC density. We found that (1) the highest accuracy of the multiple multiplicative power regression model was obtained for the estimated AGC (R2 = 0.903, RMSE = 10.91 Pg) based on the LiDAR-estimated DBH; the predicted AGC values were in the range of 4.1–279.12 kg C. (2) The highest accuracy of the multiple multiplicative power regression model was obtained by combining the normalized vegetation index (NDVI) with the predicted AGC based on the DBH estimated by LiDAR (R2 = 0.906, RMSE = 10.87 Pg); the predicted AGC values were in the range of 3.93–449.07 kg C. (3) The LiDAR-predicted AGC values and the combined LiDAR and optical image-predicted AGC values agreed with the field AGCs.

Publisher

MDPI AG

Subject

Forestry

Reference49 articles.

1. Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth;Leavitt;Nature,2020

2. The Tropical Forest Carbon Cycle and Climate Change;Mitchard;Nature,2018

3. Lorenz, K., and Lal, R. (2010). Carbon Sequestration in Forest Ecosystems, Springer.

4. Forest Ecosystems: Analysis at Multiple Scales;Waring;Choice Rev. Online,1998

5. Remote Sensing of Aboveground Forest Biomass: A Review;Mutanga;Trop. Ecol.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3