Abstract
Security and access control aspects are becoming more and more essential to consider during the design of various systems and the tremendous growth of digitization. One of the related key building blocks in this regard is, essentially, the authentication process. Conventional schemes based on one or two authenticating factors can no longer provide the required levels of flexibility and pro-activity of the access procedures, thus, the concept of threshold-based multi-factor authentication (MFA) was introduced, in which some of the factors may be missing, but the access can still be granted. In turn, secret sharing is a crucial component of the MFA systems, with Shamir’s schema being the most widely known one historically and based on Lagrange interpolation polynomial. Interestingly, the older Newtonian approach to the same problem is almost left without attention. At the same time, it means that the coefficients of the existing secret polynomial do not need to be re-calculated while adding a new factor. Therefore, this paper investigates this known property of Newton’s interpolation formula, illustrating that, in specific MFA cases, the whole system may become more flexible and scalable, which is essential for future authentication systems.
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献