Neural Crypto-Coding Based Approach to Enhance the Security of Images over the Untrusted Cloud Environment

Author:

Kulkarni Pallavi1ORCID,Khanai Rajashri2,Torse Dattaprasad1,Iyer Nalini3,Bindagi Gururaj4

Affiliation:

1. Department of Electronics and Communication Engineering, KLE Dr. MSSCET, Belgaum 590008, India

2. Department of Computer Science Engineering, KLE Dr. MSSCET, Belgaum 590008, India

3. Department of Electronics and Communication Engineering, KLE Technological University, Hubli 580031, India

4. Platform Architect, Novartis, Hyderabad 500081, India

Abstract

The cloud provides on-demand, high-quality services to its users without the burden of managing hardware and software. Though the users benefit from the remote services provided by the cloud, they do not have their personal data in their physical possession. This certainly poses new security threats for personal and confidential data, bringing the focus back on trusting the use of the cloud for sensitive data. The benefits of the cloud outweigh the concerns raised earlier, and with an increase in cloud usage, it becomes more important for security services to evolve in order to address the ever-changing threat landscape. Advanced encryption standard (AES), being one of the most widely used encryption techniques, has inherent disadvantages related to the secret key that is shared, and predictable patterns in subkey generation. In addition, since cloud storage involves data transfer over a wireless channel, it is important to address the effect of noise and multipath propagation on the transmitted data. Catering to this problem, we propose a new approach—the secure and reliable neural cryptcoding (SARNC) technique—which provides a superior algorithm, dealing with better encryption techniques combined with channel coding. A chain is as strong as the weakest link and, in the case of symmetric key encryption, the weakest link is the shared key. In order to overcome this limitation, we propose an approach wherein the key used for cryptographic purposes is different from the key shared between the sender and the receiver. The shared key is used to derive the secret private key, which is generated by the neural key exchange protocol. In addition, the proposed approach emphasizes strengthening the sub-key generation process and integrating advanced encryption standard (AES) with low-density parity check (LDPC) codes to provide end-to-end security and reliability over wireless channels. The proposed technique was tested against research done in related areas. A comparative study shows a significant improvement in PSNR, MSE, and the structural similarity index (SSIM). The key strength analysis was carried out to understand the strength and weaknesses of the keys generated.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural secret key enabled secure cloud storage with efficient packet checker algorithm;Cyber Security and Applications;2025-12

2. Double Encryption Technique for Sharing and Storing the Images in the Cloud Environment;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

3. Privacy-Preserving Techniques in Cloud/Fog and Internet of Things;Cryptography;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3