Revisiting Multiple Ring Oscillator-Based True Random Generators to Achieve Compact Implementations on FPGAs for Cryptographic Applications

Author:

Parrilla Luis1ORCID,García Antonio1ORCID,Castillo Encarnación1ORCID,López-Villanueva Juan Antonio1ORCID,Meyer-Baese Uwe2ORCID

Affiliation:

1. Departamento de Electrónica y Tecnología de Computadores, Centro de Investigación en Tecnologías de la Información y las Telecomunicaciones CITIC-UGR, Universidad de Granada, 18071 Granada, Spain

2. Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310-6046, USA

Abstract

The generation of random numbers is crucial for practical implementations of cryptographic algorithms. In this sense, hardware security modules (HSMs) include true random number generators (TRNGs) implemented in hardware to achieve good random number generation. In the case of cryptographic algorithms implemented on FPGAs, the hardware implementation of RNGs is limited to the programmable cells in the device. Among the different proposals to obtain sources of entropy and process them to implement TRNGs, those based in ring oscillators (ROs), operating in parallel and combined with XOR gates, present good statistical properties at the cost of high area requirements. In this paper, these TRNGs are revisited, showing a method for area optimization independently of the FPGA technology used. Experimental results show that three ring oscillators requiring only three LUTs are enough to build a TRNG on Artix 7 devices from Xilinx with a throughput of 33.3 Kbps, which passes NIST tests. A throughput of 50 Kbps can be achieved with four ring oscillators, also requiring three LUTs in Artix 7 devices, while 100 Kbps can be achieved using an structure with four ring oscillators requiring seven LUTs.

Funder

FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Proyecto

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference35 articles.

1. Random number generators;Hull;SIAM Rev.,1962

2. Quasi-random number sequences from a long-period TLP generator with remarks on application to cryptography;Bright;Acm Comput. Surv. (CSUR),1979

3. Gutmann, P. (1998, January 26–29). Software Generation of Practically Strong Random Numbers. Proceedings of the Usenix Security Symposium 1998, San Antonio, TX, USA.

4. Jun, B., and Kocher, P. (2023, May 09). The Intel Random Number Generator. Available online: https://www.rambus.com/wp-content/uploads/2015/08/IntelRNG.pdf.

5. Raj, H., Saroiu, S., Wolman, A., Aigner, R., Cox, J., England, P., Fenner, C., Kinshumann, K., Loeser, J., and Mattoon, D. (2023, May 09). ftpm: A Firmware-Based tpm 2.0 Implementation. Microsoft Research. Available online: https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3