SigML++: Supervised Log Anomaly with Probabilistic Polynomial Approximation

Author:

Trivedi Devharsh1ORCID,Boudguiga Aymen2ORCID,Kaaniche Nesrine3,Triandopoulos Nikos1

Affiliation:

1. Stevens Institute of Technology, Hoboken, NJ 07030, USA

2. CEA-List, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

3. Télécom SudParis, Institut Polytechnique de Paris, 91000 Évry, France

Abstract

Security log collection and storage are essential for organizations worldwide. Log analysis can help recognize probable security breaches and is often required by law. However, many organizations commission log management to Cloud Service Providers (CSPs), where the logs are collected, processed, and stored. Existing methods for log anomaly detection rely on unencrypted (plaintext) data, which can be a security risk. Logs often contain sensitive information about an organization or its customers. A more secure approach is always to keep logs encrypted (ciphertext). This paper presents “SigML++”, an extension of “SigML” for supervised log anomaly detection on encrypted data. SigML++ uses Fully Homomorphic Encryption (FHE) according to the Cheon–Kim–Kim–Song (CKKS) scheme to encrypt the logs and then uses an Artificial Neural Network (ANN) to approximate the sigmoid (σ(x)) activation function probabilistically for the intervals [−10,10] and [−50,50]. This allows SigML++ to perform log anomaly detection without decrypting the logs. Experiments show that SigML++ can achieve better low-order polynomial approximations for Logistic Regression (LR) and Support Vector Machine (SVM) than existing methods. This makes SigML++ a promising new approach for secure log anomaly detection.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference46 articles.

1. (2023, October 16). Cloud Object Storage—Amazon S3—Amazon Web Services. Available online: https://aws.amazon.com/s3/.

2. (2023, October 16). Azure Blob Storage | Microsoft Azure. Available online: https://azure.microsoft.com/en-us/products/storage/blobs/.

3. (2023, October 16). S.3195—Consumer Online Privacy Rights Act, Available online: https://www.congress.gov/bill/117th-congress/senate-bill/3195.

4. (2023, October 16). TITLE 1.81.5. California Consumer Privacy Act of 2018 [1798.100–1798.199.100], Available online: https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5.

5. (2023, October 16). EUR-Lex—02016R0679-20160504—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3