Improving User Privacy in Identity-Based Encryption Environments

Author:

Adams CarlisleORCID

Abstract

The promise of identity-based systems is that they maintain the functionality of public key cryptography while eliminating the need for public key certificates. The first efficient identity-based encryption (IBE) scheme was proposed by Boneh and Franklin in 2001; variations have been proposed by many researchers since then. However, a common drawback is the requirement for a private key generator (PKG) that uses its own master private key to compute private keys for end users. Thus, the PKG can potentially decrypt all ciphertext in the environment (regardless of who the intended recipient is), which can have undesirable privacy implications. This has led to limited adoption and deployment of IBE technology. There have been numerous proposals to address this situation (which are often characterized as methods to reduce trust in the PKG). These typically involve threshold mechanisms or separation-of-duty architectures, but unfortunately often rely on non-collusion assumptions that cannot be guaranteed in real-world settings. This paper proposes a separation architecture that instantiates several intermediate CAs (ICAs), rather than one (as in previous work). We employ digital credentials (containing a specially-designed attribute based on bilinear maps) as the blind tokens issued by the ICAs, which allows a user to easily obtain multiple layers of pseudonymization prior to interacting with the PKG. As a result, our proposed architecture does not rely on unrealistic non-collusion assumptions and allows a user to reduce the probability of a privacy breach to an arbitrarily small value.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference27 articles.

1. Identity-Based Cryptosystems and Signature Schemes;Shamir;Advances in Cryptology—Proceedings of Crypto ’84, LNCS,1985

2. Identity-based encryption from the Weil pairing (extended abstract);Boneh;Advances in Cryptology: Proceedings of Crypto 2001, LNCS,2022

3. Identity-Based Encryption from the Weil Pairing;Boneh;SIAM J. Comput.,2003

4. Removing Escrow from Identity-Based Encryption: New Security Notions and Key Management Techniques;Chow;Public Key Cryptography—PKC 2009, LNCS,2009

5. How to Share a Lattice Trapdoor: Threshold Protocols for Signatures and (H)IBE;Bendlin;Applied Cryptography and Network Security, LNCS,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3