Data Sharing Privacy Metrics Model Based on Information Entropy and Group Privacy Preference

Author:

Guo Yihong12,Zuo Jinxin12,Guo Ziyu12ORCID,Qi Jiahao12,Lu Yueming12

Affiliation:

1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education, Beijing 100876, China

Abstract

With the development of the mobile internet, service providers obtain data and resources through a large number of terminal user devices. They use private data for business empowerment, which improves the user experience while causing users’ privacy disclosure. Current research ignores the impact of disclosing user non-sensitive attributes under a single scenario of data sharing and lacks consideration of users’ privacy preferences. This paper constructs a data-sharing privacy metrics model based on information entropy and group privacy preferences. Use information theory to model the correlation of the privacy metrics problem, the improved entropy weight algorithm to measure the overall privacy of the data, and the analytic hierarchy process to correct user privacy preferences. Experiments show that this privacy metrics model can better quantify data privacy than conventional methods, provide a reliable evaluation mechanism for privacy security in data sharing and publishing scenarios, and help to enhance data privacy protection.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Analysis of Trust, Privacy, and Security Measures in the Digital Age;2023 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3