Contemporary Physical Clone-Resistant Identity for IoTs and Emerging Technologies

Author:

Hamadaqa Emad,Mulhem SalehORCID,Adi Wael,Berekovic Mladen

Abstract

Internet of things (IoT) technologies have recently gained much interest from numerous industries, where devices, machines, sensors, or simply things are linked with each other over open communication networks. However, such an operation environment brings new security threats and technology challenges in securing and stabilizing such large systems in the IoT world. Device identity in such an environment is an essential security requirement as a secure anchor for most applications towards clone-resistant resilient operational security. This paper analyzes different contemporary authenticated identification techniques and discusses possible future technologies for physically clone-resistant IoT units. Two categories of identification techniques to counteract cloning IoT units are discussed. The first category is inherently cloneable and includes the classical identification mechanisms based on secret and public key cryptography. Such techniques deploy mainly secret keys stored permanently somewhere in the IoT devices as classical means to make units clone-resistant. However, such techniques are inherently cloneable as the manufacturer or device personalizers can clone them by re-using the same secret key (which must be known to somebody) or reveal keys to third parties to create cloned entities. In contrast, the second, more resilient category is inherently unclonable because it deploys unknown and hard to predict born analog modules such as physical unclonable functions (PUFs) or mutated digital modules and so-called secret unknown ciphers (SUCs). Both techniques are DNA-like identities and hard to predict and clone even by the manufacturer itself. Born PUFs were introduced two decades ago; however, PUFs as analog functions failed to serve as practically usable unclonable electronic identities due to being costly, unstable/inconsistent, and non-practical for mass application. To overcome the drawbacks of analog PUFs, SUCs techniques were introduced a decade ago. SUCs, as mutated modules, are highly consistent, being digital modules. However, as self-mutated digital modules, they offer only clone-resistant identities. Therefore, the SUC technique is proposed as a promising clone-resistant technology embedded in emerging IoT units in non-volatile self-reconfiguring devices. The main threats and expected security requirements in the emerging IoT applications are postulated. Finally, the presented techniques are analyzed, classified, and compared considering security, performance, and complexity given future expected IoT security features and requirements.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference75 articles.

1. IoT Growth Demands Rethink of Long-Term Storage Strategies, Says IDChttps://www.idc.com/getdoc.jsp?containerId=prAP46737220

2. Towards Security on Internet of Things: Applications and Challenges in Technology

3. Silicon physical random functions;Gassend,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3