The Cost of a True Random Bit—On the Electronic Cost Gain of ASIC Time-Domain-Based TRNGs

Author:

Klein Netanel,Harel Eyal,Levi ItamarORCID

Abstract

Random number generators are of paramount importance in numerous fields. Under certain well-defined adversarial settings, True Random Number Generators (TRNGs) are more secure than their computational (pseudo) random number generator counterparts. TRNGs are also known to be more efficiently implemented on hardware platforms where, for various applications, efficiency in terms of electronic cost factors is critical. In this manuscript, we first provide an evaluation of robustness and reliability of efficient time-domain-based TRNG implementation over FPGA platform. In particular, we demonstrate sensitivities which imply a TRNG construction which is not agnostic to electronic-design-automation tools and to the level of designers’ know-how. This entails a large amount of effort and validation to make the designs robust, as well as requires a high degree of complexity from non-trivial FPGAs flows. This motivates the second part of the manuscript, where we propose an ASIC-based implementation of the TRNG, along with the optimization steps to enhance its characteristics. The optimized design improves the randomness-throughput by 42× for the same entropy level described in previous works, and it can provide maximal entropy level of 0.985 with 7× improvement in randomness throughput over the raw samples (no pre-processing). The proposed design simultaneously provides a reduced energy of 0.1 (mW/bit) for the same entropy level as previous works, and 1.06 (mW/bit) for the higher entropy flavor, and a lower area utilization of 0.000252 (mm2) on a 65 nm technology evaluation, situating it in the top-class of the discuss ratings. This leads to the quantitative question of the gain in electronic cost factors over ASIC TRNGs, and the minimum Cost Per Bit/Source possible to date. Finally, we exemplify a TRNG versus PRNG cost-extrapolation for security architects and designers, targeting an ASIC scenario feeding a lightweight encryption core.

Funder

Israel Science Foundation

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference41 articles.

1. Fast digital TRNG based on metastable ring oscillator;Vasyltsov,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3