Barrel Shifter Physical Unclonable Function Based Encryption

Author:

Guo Yunxi,Dee Timothy,Tyagi Akhilesh

Abstract

Physical Unclonable Functions (PUFs) are designed to extract physical randomness from the underlying silicon. This randomness depends on the manufacturing process. It differs for each device. This enables chip-level authentication and key generation applications. We present an encryption protocol using PUFs as primary encryption/decryption functions. Each party has a PUF used for encryption and decryption. This PUF is constrained to be invertible and commutative. The focus of the paper is an evaluation of an invertible and commutative PUF based on a primitive shifting permutation network—a barrel shifter. Barrel shifter (BS) PUF captures the delay of different shift paths. This delay is entangled with message bits before they are sent across an insecure channel. BS-PUF is implemented using transmission gates for physical commutativity. Post-layout simulations of a common centroid layout 8-level barrel shifter in 0.13 μ m technology assess uniqueness, stability, randomness and commutativity properties. BS-PUFs pass all selected NIST statistical randomness tests. Stability similar to Ring Oscillator (RO) PUFs under environmental variation is shown. Logistic regression of 100,000 plaintext–ciphertext pairs (PCPs) fails to successfully model BS-PUF behavior.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference33 articles.

1. Twenty years of attacks on the RSA cryptosystem;Boneh;Not. AMS,1999

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Provably secure authentication for the internet of vehicles;Journal of King Saud University - Computer and Information Sciences;2023-09

2. Implement Seven Patient-Oriented Data Security Metrics using Unclonable Health Insurance Cards;2023 the 7th International Conference on Medical and Health Informatics (ICMHI);2023-05-12

3. Security Authentication Protocol for Massive Machine Type Communication in 5G Networks;Wireless Communications and Mobile Computing;2023-04-06

4. Lightweight Cloud Computing-Based RFID Authentication Protocols Using PUF for e-Healthcare Systems;IEEE Sensors Journal;2023-03-15

5. The Improvement of PUF-Based Authentication in IoT Systems;Journal of Advances in Information Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3