A Novel Two-Level Protection Scheme against Hardware Trojans on a Reconfigurable CNN Accelerator

Author:

Liu Zichu1,Hou Jia1,Wang Jianfei1,Yang Chen1ORCID

Affiliation:

1. School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

With the boom in artificial intelligence (AI), numerous reconfigurable convolution neural network (CNN) accelerators have emerged within both industry and academia, aiming to enhance AI computing capabilities. However, this rapid landscape has also witnessed a rise in hardware Trojan attacks targeted at CNN accelerators, thereby posing substantial threats to the reliability and security of these reconfigurable systems. Despite this escalating concern, there exists a scarcity of security protection schemes explicitly tailored to counteract hardware Trojans embedded in reconfigurable CNN accelerators, and those that do exist exhibit notable deficiencies. Addressing these gaps, this paper introduces a dedicated security scheme designed to mitigate the vulnerabilities associated with hardware Trojans implanted in reconfigurable CNN accelerators. The proposed security protection scheme operates at two distinct levels: the first level is geared towards preventing the triggering of the hardware Trojan, while the second level focuses on detecting the presence of a hardware Trojan post-triggering and subsequently neutralizing its potential harm. Through experimental evaluation, our results demonstrate that this two-level protection scheme is capable of mitigating at least 99.88% of the harm cause by three different types of hardware Trojan (i.e., Trojan within RI, MAC and ReLU) within reconfigurable CNN accelerators. Furthermore, this scheme can prevent hardware Trojans from triggering whose trigger signal is derived from a processing element (PE). Notably, the proposed scheme is implemented and validated on a Xilinx Zynq XC7Z100 platform.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3