Quantum Identity-Based Encryption from the Learning with Errors Problem

Author:

Gao WenhuaORCID,Yang LiORCID,Zhang Daode,Liu Xia

Abstract

To prevent eavesdropping and tampering, network security protocols take advantage of asymmetric ciphers to establish session-specific shared keys with which further communication is encrypted using symmetric ciphers. Commonly used asymmetric algorithms include public key encryption, key exchange, and identity-based encryption (IBE). However, network security protocols based on classic identity-based encryption schemes do not have perfect forward secrecy. To solve this problem, we construct the first quantum IBE (QIBE) scheme based on the learning with errors (LWE) problem, which is also the first cryptographic scheme that applies the LWE problem to quantum encryption. We prove that our scheme is fully secure under the random oracle model and highlight the following advantages: (1) Network security protocols with our QIBE scheme provide perfect forward secrecy. The ciphertext is transmitted in the form of a quantum state unknown to the adversary and cannot be copied and stored. Thus, in network security protocols based on QIBE construction, the adversary does not have any previous quantum ciphertext to decrypt for obtaining the previous session key, even if the private identity key is threatened. (2) Classic key generation centre (KGC) systems can still be used in the QIBE scheme to generate and distribute private identity keys, reducing the cost when implementing this scheme. The classic KGC systems can be used because the master public and secret keys of our scheme are both in the form of classic bits. Finally, we present quantum circuits to implement this QIBE scheme and analyse its required quantum resources for given numbers of qubits, Hadamard gates, phase gates, T gates, and CNOT (controlled-NOT) gates. One of our main findings is that the quantum resources required by our scheme increase linearly with the number of plaintext bits to be encrypted.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference30 articles.

1. Identity-Based Cryptosystems and Signature Schemes;Shamir,1984

2. Identity-Based Encryption from the Weil Pairing;Boneh,2001

3. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles;Boneh,2004

4. Efficient Identity-Based Encryption Without Random Oracles;Waters,2005

5. An Identity Based Encryption Scheme Based on Quadratic Residues;Cocks,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3