A CCA-PKE Secure-Cryptosystem Resilient to Randomness Reset and Secret-Key Leakage

Author:

Labao AlfonsoORCID,Adorna HenryORCID

Abstract

In recent years, several new notions of security have begun receiving consideration for public-key cryptosystems, beyond the standard of security against adaptive chosen ciphertext attack (CCA2). Among these are security against randomness reset attacks, in which the randomness used in encryption is forcibly set to some previous value, and against constant secret-key leakage attacks, wherein the constant factor of a secret key’s bits is leaked. In terms of formal security definitions, cast as attack games between a challenger and an adversary, a joint combination of these attacks means that the adversary has access to additional encryption queries under a randomness of his own choosing along with secret-key leakage queries. This implies that both the encryption and decryption processes of a cryptosystem are being tampered under this security notion. In this paper, we attempt to address this problem of a joint combination of randomness and secret-key leakage attacks through two cryptosystems that incorporate hash proof system and randomness extractor primitives. The first cryptosystem relies on the random oracle model and is secure against a class of adversaries, called non-reversing adversaries. We remove the random oracle oracle assumption and the non-reversing adversary requirement in our second cryptosystem, which is a standard model that relies on a proposed primitive called LM lossy functions. These functions allow up to M lossy branches in the collection to substantially lose information, allowing the cryptosystem to use this loss of information for several encryption and challenge queries. For each cryptosystem, we present detailed security proofs using the game-hopping procedure. In addition, we present a concrete instantation of LM lossy functions in the end of the paper—which relies on the DDH assumption.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference31 articles.

1. Rivest-Shamir-Adleman Algorithm;Koç,2021

2. A graduate Course in Applied Cryptographyhttps://toc.cryptobook.us/book.pdf

3. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack;Cramer,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3