Constrained Device Performance Benchmarking with the Implementation of Post-Quantum Cryptography

Author:

Fitzgibbon Gregory1,Ottaviani Carlo2ORCID

Affiliation:

1. Quantum and AI Research, Tession Ltd., Cheadle, Cheshire SK8 1PY, UK

2. Department of Computer Science & York Centre for Quantum Technologies, University of York, York YO10 5GH, UK

Abstract

Advances in quantum computers may pose a significant threat to existing public-key encryption methods, which are crucial to the current infrastructure of cyber security. Both RSA and ECDSA, the two most widely used security algorithms today, may be (in principle) solved by the Shor algorithm in polynomial time due to its ability to efficiently solve the discrete logarithm problem, potentially making present infrastructures insecure against a quantum attack. The National Institute of Standards and Technology (NIST) reacted with the post-quantum cryptography (PQC) standardization process to develop and optimize a series of post-quantum algorithms (PQAs) based on difficult mathematical problems that are not susceptible to being solved by Shor’s algorithm. Whilst high-powered computers can run these PQAs efficiently, further work is needed to investigate and benchmark the performance of these algorithms on lower-powered (constrained) devices and the ease with which they may be integrated into existing protocols such as TLS. This paper provides quantitative benchmark and handshake performance data for the most recently selected PQAs from NIST, tested on a Raspberry Pi 4 device to simulate today’s IoT (Internet of Things) devices, and provides quantitative comparisons with previous benchmarking data on a range of constrained systems. CRYSTALS-Kyber and CRYSTALS-Dilithium are shown to be the most efficient PQAs in the key encapsulation and signature algorithms, respectively, with Falcon providing the optimal TLS handshake size.

Funder

EPSRC

DSIT TMF-uplift CHEDDAR

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3