Sodium Alginate–Gelatin Nanoformulations for Encapsulation of Bacillus velezensis and Their Use for Biological Control of Pistachio Gummosis

Author:

Moradi Pour MojdeORCID,Saberi Riseh Roohallah,Skorik Yury A.ORCID

Abstract

Biopolymer-based nanocomposites are favorable materials for the encapsulation of biofertilizers and biocontrol agents. In this research, sodium alginate, a widely used natural polymer, was extracted and purified from Macrocystis pyrifera. Its composition was confirmed using 1H NMR and FTIR analyses, and its molecular weight and mannuronic acid/guluronic acid ratio were obtained. Sodium alginate–gelatin microcapsules enriched with carbon nanotubes and SiO2 nanoparticles were prepared to encapsulate Bacillus velezensis, and the biological effects of this formulation on the control of pistachio gummosis and growth parameters were investigated. Microscopy examination showed that the microcapsules had quite globular shapes. XRD confirmed the occurrence of an electrostatic interaction when sodium alginate was blended with gelatin. The survival rate of the encapsulated bacteria was about 107 CFU/mL and was maintained after one year of storage. The aim of this study was to achieve a unique formulation containing beneficial bacteria and nanoparticles for the synergistic control of Phytophthora drechsleri.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3