Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens

Author:

Zhu YichuanORCID,Medina-Cetina ZenonORCID,Pineda-Contreras Alma RosaORCID

Abstract

This paper follows up on a reference paper that inspired MDPI’s Topic “Stochastic Geomechanics: From Experimentation to Forward Modeling”, where global and local deformation effects on sand specimens are fully described from high resolution boundary displacement fields, and supported by its experimental database, which is open to the scientific community for further study. This paper introduces the use of spatio-temporal statistics from a subset of such an experimental database to characterize the specimens’ spatio-temporal displacement fields, populated by repeating a set of triaxial compression tests on drained, dry, vacuum-consolidated sand specimens, tested under similar experimentally controlled conditions. A three-dimensional digital image correlation (3D-DIC) technique was used to measure the specimens’ boundary displacement fields throughout the course of shearing under axial compression. Spatio-temporal first- and second-order statistics were computed for different data dimensionality conditions (0D, 0D-T, 1D-T, 3D-T) to identify and characterize the dominant failure mechanisms across different testing specimens. This allowed us to quantify localization phenomena’s spatio-temporal uncertainty. Results show that the uncertainty captured along the deformation process across different dimensionality conditions can be directly associated with different failure mechanisms, including localization patterns, such as the onset and evolution of shear, compression, and expansion bands. These spatio-temporal observations show the dependencies between locally distinctive displacement regions over a specimen’s surface, and across different times during a specimen’s shearing process. Results of this work provide boundary spatio-temporal statistics of experimental evidence in sands, which sets the basis for the development of research on the numerical simulation of sand’s constitutive behavior. Moreover, it allows to add a new understanding on the effect of uncertainty on the mechanistic interpretation of sands’ kinematic phenomena.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3