Omnidirectional Haptic Guidance for the Hearing Impaired to Track Sound Sources

Author:

Shimoyama Ryuichi

Abstract

We developed a hearing assistance system that enables hearing-impaired people to track the horizontal movement of a single sound source. The movement of the sound source is presented to the subject by vibrating vibrators on both shoulders according to the distance to and direction of the sound source, which are estimated from the acoustic signals detected by microphones attached to both ears. We presented the direction of and distance to the sound source to the subject by changing the ratio of the intensity of the two vibrators according to the direction and by increasing the intensity the closer the person got to the sound source. The subject could recognize the approaching sound source as a change in the vibration intensity by turning their face in the direction where the intensity of both vibrators was equal. The direction of the moving sound source can be tracked with an accuracy of less than 5° when an analog vibration pattern is added to indicate the direction of the sound source. By presenting the direction of the sound source with high accuracy, it is possible to show subjects the approach and departure of a sound source.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3