Optimization of the Unambiguity of Cross-Correlated Ultrasonic Signals through Coded Excitation Sequences for Robust Time-of-Flight Measurements

Author:

Schäfer MariusORCID,Theado Hendrik,Becker Michael M.,Fischer Sarah C. L.ORCID

Abstract

The cross-correlation function (CCF) is an established technique to calculate time-of-flight for ultrasonic signals. However, the quality of the CCF depends on the shape of the input signals. In many use cases, the CCF can exhibit secondary maxima in the same order of magnitude as the main maximum, making its interpretation less robust against external disturbances. This paper describes an approach to optimize ultrasonic signals for time-of-flight measurements through coded excitation sequences. The main challenge for applying coded excitation sequences to ultrasonic signals is the influence of the piezoelectric transducer on the outgoing signal. Thus, a simulation model to describe the transfer function of an experimental setup was developed and validated with common code sequences such as pseudo noise sequences (PN), Barker codes and chirp signals. Based on this model an automated optimization of ultrasonic echoes was conducted with random generated sequences, resulting in a decrease in the secondary positive maximum of the CCF to 56.6%. Based on these results, further empiric optimization leveraging the nonlinear regime of the piezoelectric transducer resulted in an even lower secondary positive maximum of the CCF with a height of 25% of the first maximum. Experiments were conducted on different samples to show that the findings hold true for small variations in the experimental setup; however, further work is necessary to develop transfer functions and simulations able to include a wider parameter space, such as varying transducer types or part geometry.

Funder

Fraunhofer-Gesellschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3