Stretchable Magneto-Mechanical Configurations with High Magnetic Sensitivity Based on “Gel-Type” Soft Rubber for Intelligent Applications

Author:

Kumar Vineet1ORCID,Park Sang-Shin1ORCID

Affiliation:

1. School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea

Abstract

“Gel-type” soft and stretchable magneto-mechanical composites made of silicone rubber and iron particles are in focus because of their high magnetic sensitivity, and intelligence perspective. The “intelligence” mentioned here is related to the “smartness” of these magneto-rheological elastomers (MREs) to tune the “mechanical stiffness” and “output voltage” in energy-harvesting applications by switching magnetic fields. Hence, this work develops “gel-type” soft composites based on rubber reinforced with iron particles in a hybrid with piezoelectric fillers such as barium titanate. A further aspect of the work relies on studying the mechanical stability of intelligence and the stretchability of the composites. For example, the stretchability was 105% (control), and higher for 158% (60 per 100 parts of rubber (phr) of barium titanate, BaTiO3), 149% (60 phr of electrolyte iron particles, EIP), and 148% (60 phr of BaTiO3 + EIP hybrid). Then, the magneto-mechanical aspect will be investigated to explore the magnetic sensitivity of these “gel-type” soft composites with a change in mechanical stiffness under a magnetic field. For example, the anisotropic effect was 14.3% (60 phr of EIP), and 4.4% (60 phr of hybrid). Finally, energy harvesting was performed. For example, the isotropic samples exhibit ~20 mV (60 phr of BaTiO3), ~5.4 mV (60 phr of EIP), and ~3.7 mV (60 phr of hybrid). However, the anisotropic samples exhibit ~5.6 mV (60 phr of EIP), and ~8.8 mV (60 phr of hybrid). In the end, the composites prepared have three configurations, namely one with electro-mechanical aspects, another with magnetic sensitivity, and a third with both features. Overall, the experimental outcomes will make fabricated composites useful for different intelligent and stretchable applications.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3