Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin

Author:

Valencia-Valero Laura Carolina1,Fajardo-Puerto Edgar1,Elmouwahidi Abdelhakim1ORCID,Bailón-García Esther1,Carrasco-Marín Francisco1ORCID,Pérez-Cadenas Agustín Francisco1ORCID

Affiliation:

1. UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain

Abstract

The electro-Fenton process is based on the generation of hydroxyl radicals (OH•) from hydroxide peroxide (H2O2) generated in situ by an oxygen reduction reaction (ORR). Catalysts based on carbon gels have aroused the interest of researchers as ORR catalysts due to their textural, chemical and even electrical properties. In this work, we synthesized metal-free electrocatalysts based on carbon gels doped with graphene oxide, which were conformed to a working electrode. The catalysts were prepared from organic-gel-based inks using painted (brush) and screen-printed methods free of binders. These new methods of electrode preparation were compared with the conventional pasted method on graphite supports using a binder. All these materials were tested for the electro-Fenton degradation of amoxicillin using a homemade magnetite coated with carbon (Fe3O4/C) as a Fenton catalyst. All catalysts showed very good behavior, but the one prepared by ink painting (brush) was the best one. The degradation of amoxicillin was close to 90% under optimal conditions ([Fe3O4/C] = 100 mg L−1, −0.55 V) with the catalyst prepared using the painted method with a brush, which had 14.59 mA cm−2 as JK and a H2O2 electrogeneration close to 100% at the optimal voltage. These results show that carbon-gel-based electrocatalysts are not only very good at this type of application but can be adhered to graphite free of binders, thus enhancing all their catalytic properties.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3