Self-Assembled Aminated and TEMPO Cellulose Nanofibers (Am/TEMPO-CNF) Aerogel for Adsorptive Removal of Oxytetracycline and Chloramphenicol Antibiotics from Water

Author:

Amen Rabia1ORCID,Elsayed Islam12ORCID,Schueneman Gregory T.3,Hassan El Barbary1ORCID

Affiliation:

1. Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Mississippi State, MS 39762, USA

2. Department of Chemistry, Faculty of Science, Damietta University, New Damietta 34517, Egypt

3. Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA

Abstract

Antibiotics are used for the well-being of human beings and other animals. Detectable levels of antibiotics can be found in pharmaceutical, municipal, and animal effluents. Therefore, the treatment of antibiotic contaminated water is of great concern. In this study, we fabricated a sustainable aminated/TEMPO cellulose nanofiber (Am/TEMPO-CNF) aerogel to remove oxytetracycline (OTC) and chloramphenicol (CAP) from synthetic wastewater. The prepared aerogel was characterized using different analytical techniques such as elemental analysis, FTIR, TGA, SEM-EDS, and N2 adsorption–desorption isotherms. The characterization techniques confirmed the presence and interaction of quaternary amine -[NR3]+ and -COOH groups on Am/TEMPO-CNF with OTC and CAP, which validates the successful modification of Am/TEMPO-CNF. The adsorption process of the pollutants was examined as a function of solution pH, concentrations, reaction time, and temperatures. The maximum adsorption capacity was 153.13 and 150.15 mg/g for OTC and CAP, respectively. The pseudo-second order (PSO-2) was well fitted to both OTC and CAP, confirming the removal is via chemisorption. Hydrogen bonding and electrostatic attraction have been postulated as key factors in facilitating OTC and CAP adsorption according to spectroscopic studies. Energetically, the adsorption was spontaneous and endothermic for both pollutants. In conclusion, the efficient removal rate and excellent reusability of Am/TEMPO-CNF indicate the strong potential of the adsorbent for antibiotics’ removal.

Funder

McIntire Stennis project

USDA Forest Products Laboratory

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3