A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation

Author:

Matejkova Jana1ORCID,Kanokova Denisa1ORCID,Supova Monika2ORCID,Matejka Roman1ORCID

Affiliation:

1. Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic

2. Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics of The Czech Academy of Sciences, v.v.i., 182 09 Prague, Czech Republic

Abstract

It is believed that 3D bioprinting will greatly help the field of tissue engineering and regenerative medicine, as live patient cells are incorporated into the material, which directly creates a 3D structure. Thus, this method has potential in many types of human body tissues. Collagen provides an advantage, as it is the most common extracellular matrix present in all kinds of tissues and is, therefore, very natural for cells and the organism. Hydrogels with highly concentrated collagen make it possible to create 3D structures without additional additives to crosslink the polymer, which could negatively affect cell proliferation and viability. This study established a new method for preparing highly concentrated collagen bioinks, which does not negatively affect cell proliferation and viability. The method is based on two successive neutralizations of the prepared hydrogel using the bicarbonate buffering mechanisms of the 2× enhanced culture medium and pH adjustment by adding NaOH. Collagen hydrogel was used in concentrations of 20 and 30 mg/mL dissolved in acetic acid with a concentration of 0.05 and 0.1 wt.%. The bioink preparation process is automated, including colorimetric pH detection and adjustment. The new method was validated using bioprinting and subsequent cultivation of collagen hydrogels with incorporated stromal cells. After 96 h of cultivation, cell proliferation and viability were not statistically significantly reduced.

Funder

Ministry of Health of the Czech Republic

Grant Agency of the Czech Technical University in Prague

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3