Affiliation:
1. Faculty of Business and Information Technology, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
Abstract
According to the American Humane Association, millions of cats and dogs are lost yearly. Only a few thousand of them are found and returned home. In this work, we use deep learning to help expedite the procedure of finding lost cats and dogs, for which a new dataset is collected. We applied transfer learning methods on different convolutional neural networks for species classification and animal identification. The framework consists of seven sequential layers: data preprocessing, species classification, face and body detection with landmark detection techniques, face alignment, identification, animal soft biometrics, and recommendation. We achieved an accuracy of 98.18% on species classification. In the face identification layer, 80% accuracy was achieved. Body identification resulted in 81% accuracy. When using body identification in addition to face identification, the accuracy increased to 86.5%, with a 100% chance that the animal would be in our top 10 recommendations of matching. By incorporating animals’ soft biometric information, the system can identify animals with 92% confidence.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Domestic Cats Facial Expression Recognition Based on Convolutional Neural Networks;International Journal of Engineering and Advanced Technology;2024-06-30
2. Cattle Face Recognition Using Deep Transfer Learning Techniques;2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor);2023-11-06