Reinforcement Learning-Based Hybrid Multi-Objective Optimization Algorithm Design

Author:

Palm Herbert1ORCID,Arndt Lorin1

Affiliation:

1. Systems Engineering Laboratory, University of Applied Sciences, Lothstrasse 64, 80335 München, Germany

Abstract

The multi-objective optimization (MOO) of complex systems remains a challenging task in engineering domains. The methodological approach of applying MOO algorithms to simulation-enabled models has established itself as a standard. Despite increasing in computational power, the effectiveness and efficiency of such algorithms, i.e., their ability to identify as many Pareto-optimal solutions as possible with as few simulation samples as possible, plays a decisive role. However, the question of which class of MOO algorithms is most effective or efficient with respect to which class of problems has not yet been resolved. To tackle this performance problem, hybrid optimization algorithms that combine multiple elementary search strategies have been proposed. Despite their potential, no systematic approach for selecting and combining elementary Pareto search strategies has yet been suggested. In this paper, we propose an approach for designing hybrid MOO algorithms that uses reinforcement learning (RL) techniques to train an intelligent agent for dynamically selecting and combining elementary MOO search strategies. We present both the fundamental RL-Based Hybrid MOO (RLhybMOO) methodology and an exemplary implementation applied to mathematical test functions. The results indicate a significant performance gain of intelligent agents over elementary and static hybrid search strategies, highlighting their ability to effectively and efficiently select algorithms.

Publisher

MDPI AG

Subject

Information Systems

Reference31 articles.

1. A leader’s framework for decision making;Snowden;Harv. Bus. Rev.,2007

2. Coping with complexity, uncertainty and ambiguity in risk governance: A synthesis;Renn;Ambio,2011

3. Hwang, C.L., and Masud, A.S.M. (2012). Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey, Springer Science & Business Media.

4. Multi-objective decision making;Roijers;Synth. Lect. Artif. Intell. Mach. Learn.,2017

5. A survey on multi criteria decision making methods and its applications;Aruldoss;Am. J. Inf. Syst.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3